Page 176 - FUNCIÓN Y SENTIDO DE LA INVESTIGACIÓN
P. 176

Peidro, D., Mula, J., Poler, R. and Lario, F. C. (2009). Quantitative models for supply chain plan-
                      ning under uncertainty: a review. The International Journal of Advanced Manufacturing

                      Technology, 43(3-4), 400-420.

               Ríos, F., Martínez, A., Palomo, T., Cáceres, S. y Díaz, M. (2008). Inventarios probabilísticos con
                      demanda independiente de revisión continua, modelos con nuevos pedidos. CIENCIA er-
                      go-sum, 15(3), 251-258.                                                                       Y SENTIDO DE LA INVESTIGACIÓN


               Sakalli, U. S. and Birgoren, B. (2009). A spreadsheet-based decision support tool for blending
                      problems in brass casting industry. Computers & Industrial Engineering, 56(2), 724-735.


               Schoenherr, T. and Speier-Pero, C. (2015). Data science, predictive analytics, and big data in sup-
                      ply chain management: Current state and future potential. Journal of Business Logistics,
                      36(1), 120-132.

               Serrano-Cobos, J. (2014). Big data y analítica web. Estudiar las corrientes y pescar en un océano    FUNCIÓN

                      de datos. El Profesional de la Información, 23(6), 561-565.

               Stefanovic, N. (2014). Proactive supply chain performance management with predictive analytics.
                      The Scientific World Journal, 2014.


               Süer, G. A., Subramanian, A. and Huang, J. (2009). Heuristic procedures and mathematical models
                      for cell loading and scheduling in a shoe manufacturing company. Computers & Industrial
                      Engineering, 56(2), 462-475.                                                               175

               Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological

                      discovery. Big data, 1(2), 85-99.

               Waller, M. A. and Fawcett, S. E. (2013). Data Science, predictive analytics, and big data: a revolu-
                      tion that will transform supply chain design and management. Journal of Business Logis-

                      tics, 34(2), 77-84.

               Zhong, R. Y., Newman, S. T., Huang, G. Q. and Lan, S. (2016). Big Data for supply chain man-
                      agement in the service and manufacturing sectors: Challenges, opportunities, and future
                      perspectives. Computers & Industrial Engineering, 101, 572-591.
   171   172   173   174   175   176   177   178   179   180   181