Page 176 - FUNCIÓN Y SENTIDO DE LA INVESTIGACIÓN
P. 176
Peidro, D., Mula, J., Poler, R. and Lario, F. C. (2009). Quantitative models for supply chain plan-
ning under uncertainty: a review. The International Journal of Advanced Manufacturing
Technology, 43(3-4), 400-420.
Ríos, F., Martínez, A., Palomo, T., Cáceres, S. y Díaz, M. (2008). Inventarios probabilísticos con
demanda independiente de revisión continua, modelos con nuevos pedidos. CIENCIA er-
go-sum, 15(3), 251-258. Y SENTIDO DE LA INVESTIGACIÓN
Sakalli, U. S. and Birgoren, B. (2009). A spreadsheet-based decision support tool for blending
problems in brass casting industry. Computers & Industrial Engineering, 56(2), 724-735.
Schoenherr, T. and Speier-Pero, C. (2015). Data science, predictive analytics, and big data in sup-
ply chain management: Current state and future potential. Journal of Business Logistics,
36(1), 120-132.
Serrano-Cobos, J. (2014). Big data y analítica web. Estudiar las corrientes y pescar en un océano FUNCIÓN
de datos. El Profesional de la Información, 23(6), 561-565.
Stefanovic, N. (2014). Proactive supply chain performance management with predictive analytics.
The Scientific World Journal, 2014.
Süer, G. A., Subramanian, A. and Huang, J. (2009). Heuristic procedures and mathematical models
for cell loading and scheduling in a shoe manufacturing company. Computers & Industrial
Engineering, 56(2), 462-475. 175
Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological
discovery. Big data, 1(2), 85-99.
Waller, M. A. and Fawcett, S. E. (2013). Data Science, predictive analytics, and big data: a revolu-
tion that will transform supply chain design and management. Journal of Business Logis-
tics, 34(2), 77-84.
Zhong, R. Y., Newman, S. T., Huang, G. Q. and Lan, S. (2016). Big Data for supply chain man-
agement in the service and manufacturing sectors: Challenges, opportunities, and future
perspectives. Computers & Industrial Engineering, 101, 572-591.