Page 187 - EL PROCESO DE INVESTIGACIÓN EN INSTITUCIONES DE EDUCACIÓN EN MÉXICO
P. 187

refereNCIAS



                        Bannik A., van Lingen H.J., Ellis J.L., France J., Dijkistra J. 2016. The contribution
                  of mathematical modeling to understanding dynamic aspects of rumen metabolism. Front.
                  Microbio. 7: 1820.

                        Ali E, Ho W. 2012. Applied operational research with SAS. USA. Taylor and Francis
                  Group Ed. 270 p.

                        Dembe AE, Partridge J S, Geist LC. 2011. Statistical software applications used in
          EL PROCESO DE INVESTIGACIÓN EN INSTITUCIONES DE EDUCACIÓN EN MÉXICO
                  health services research: Analysis of published studies in the U.S. BMC Health Services
                  Research. 11: 252.
                        Eiden N. 2016. Statistical methods and errors in family medicine articles between 2010
                  and 2014-Suez Canal University, Egypt: A cross-sectional study. J Family Med Prim Care
                  5(1):24-33.

                        Ellis JL., Bannik A, France J, Kebreab E, Dijkstra J. 2010. Evaluation of enteric meth-
                  ane prediction equations for dairy cows used in whole farm models. Global Change Biology
                  16(12): 3246-3256.

                        Ellis JL, Kebreab E, Odongo NE, Beauchemin K, McGinn S, Nkrumah JD, Moore SS,
                  Christopherson R, Murdoch GK, McBride BW, Okine WK, France J. 2008. Modeling pro-
                  duction from beef cattle using linear and nonlinear approaches. Journal of Animal Science
                  87:1334-1345.
                        Hoon KY, Sahngun FN, Ah KH, Young SP. 2010. Analysis of statistical methods and
                  errors in the articles published in the Korean Journal Pain. Korean J Pain 23(1):35-41.

                        López  Cruz  I.L., Van Williegenburg  L.G., Van  Straten  G.  2003.  Efficient  differen-
                  tial evolution algorithms for multiodel optimal control problems. Applied Soft Computing
                  3(2003): 97-122.




                        Statistical Analysis System. 2013. SAS/STAT User´s Guide. (Release 9.3). Cary, NC,
                  USA. SAS Inst. Inc.

                        Van Straten G. 2008. What can systems and control theory do for agricultural science?
                  Automatika 49(3-4): 105-117.
                        Vesset D, Schubmehl D, McDonough B, Wardley M. 2013. “Worldwide Business Ana-
                  lytics Software 2013–2017 Forecast and 2012 Vendor Shares”. IDC.

                        Wolfinger R., Federer W., Cordero-Brana O. 1997. Recovering information in aug-
                  mented designs, using SAS PROC GLM and PROC Mixed. Agronomy Journal Abstract 89:
                  856-859.



          178
   182   183   184   185   186   187   188   189   190   191   192